當前位置:首頁 » 招商代理 » 車削刀片招商加盟
擴展閱讀
杭州茶道加盟費多少 2025-06-07 06:12:02

車削刀片招商加盟

發布時間: 2022-02-17 07:31:51

❶ 車削20Cr材料選擇什麼刀片

車加工20Cr材料選擇刀具時,如果經過滲碳淬火後硬度高的話建議用CBN刀具,如果在淬火前加工可以選擇普通高速鋼車刀,硬質合金刀片等進行加工。

20Cr是一種鋼的牌號, 為低淬透性滲碳鋼。大多用於製造心部強度要求較高,表面承受磨損、截面在30mm以下的或形狀復雜而負荷不大的滲碳零件。20Cr鋼件淬火滲碳後有極好的加工性能,但是同時也需要解決淬火後硬度高難加工的問題。

車20Cr材料選擇刀具要根據其具體使用情況來選擇,淬火前可以選用普通的刀片,淬火後可以選擇氮化硼車刀片來加工。

20Cr鋼是我國目前產最大的幾個合金結構鋼之一,用途非常廣泛。20Cr鋼淬火、低溫回火後具有良好的綜合力學性能,低溫沖擊韌性良好,回火脆性不明顯。為了提高模具型腔的耐磨性,模具成型後需要進行滲碳處理,滲碳處理後的20Cr鋼件硬度高難加工,氮化硼刀具是針對高硬度難加工材料設計的刀具。

❷ 車削加工中刀具問題

這個怎麼說呢,
主要是看你加工什麼材料的零件和,加工時工序決定的。比如說加工鑄鐵一般都採用45°偏刀(粗車),精車時基本上都採用90°車刀,然後加工45剛。40M的時候粗車一般採用75°車刀,精車時採用85°的或者90°的,
然後如果你需要更高精度的零件是,刀具可採用刀尖後面帶有一點修正刃的刀具,這種刀具叫什麼名字
我一時忘記了。這種刀具加工出來的零件精度很高,但是刀具容易磨損。用得很少。

❸ 車削加工常用刀具材料種類

1高速鋼俗稱白鋼或鋒鋼(W18Cr4V)。2硬質合金分為K類有YG3YG6YG8等,P類有YT5YT15YT30等,M類有W1W2W3等,還有陶瓷刀

❹ 車削的車刀

1.定義
車刀是應用最廣的一種單刃刀具。也是學習、分析各類刀具的基礎。車刀用於各種車床上,加工外圓、內孔、端面、螺紋、車槽等。
2.分類
車刀按結構可分為整體車刀、焊接車刀、機夾車刀、可轉位車刀和成型車刀。其中可轉位車刀的應用日益廣泛,在車刀中所佔比例逐漸增加。
(1)硬質合金焊接車刀 所謂焊接式車刀,就是在碳鋼刀桿上按刀具幾何角度的要求開出刀槽,用焊料將硬質合金刀片焊接在刀槽內,並按所選擇的幾何參數刃磨後使用的車刀。
(2)機夾車刀 機夾車刀是採用普通刀片,用機械夾固的方法將刀片夾持在刀桿上使用的車刀。
(3)可轉位車刀 可轉位車刀是使用可轉位刀片的機夾車刀。一條切削刃用鈍後可迅速轉位換成相鄰的新切削刃,即可繼續工作,直到刀片上所有切削刃均已用鈍,刀片才報廢回收。更換新刀片後,車刀又可繼續工作。
與焊接車刀相比,可轉位車刀具有下述優點:
A.刀具壽命高 由於刀片避免了由焊接和刃磨高溫引起的缺陷,刀具幾何參數完全由刀片和刀桿槽保證,切削性能穩定,從而提高了刀具壽命。
B.生產效率高 由於機床操作工人不再磨刀,可大大減少停機換刀等輔助時間。
C. 有利於推廣新技術、新工藝 可轉位刀有利於推廣使用塗層、陶瓷等新型刀具材料。
D. 有利於降低刀具成本 由於刀桿使用壽命長,大大減少了刀桿的消耗和庫存量,簡化了刀具的管理工作,降低了刀具成本。
可轉位車刀刀片的夾緊特點與要求:
A. 定位精度高 刀片轉位或更換新刀片後,刀尖位置的變化應在工件精度允許的范圍內。
B. 刀片夾緊可靠 應保證刀片、刀墊、刀桿接觸面緊密貼合,經得起沖擊和振動,但夾緊力也不宜過大,應力分布應均勻,以免壓碎刀片。
C. 排屑流暢 刀片前面上最好無障礙,保證切屑排出流暢,並容易觀察。
D. 使用方便 轉換刀刃和更換新刀片方便、迅速。對小尺寸刀具結構要緊湊。 在滿足以上要求時,盡可能使結構簡單,製造和使用方便。
(4) 成形車刀 成形車刀是加工回轉體成形表面的專用刀具,其刃形是根據工件廓形設計的,可用在各類車床上加工內外回轉體的成形表面。 用成形車刀加工零件時可一次形成零件表面,操作簡便、生產率高,加工後能達到公差等級IT8~IT10、粗糙度為10~5μm,並能保證較高的互換性。但成形車刀製造較復雜、成本較高,刀刃工作長度較寬,故易引起振動。 成形車刀主要用在加工批量較大的中、小尺寸帶成形表面的零件。
按用途分類
(1)車刀按用途可分
(a)90°車刀(偏刀);
(b)45°車刀(彎頭車刀);
(c)切斷刀;
(d)鏜孔刀;
(e)成形車刀;
(f)螺紋車刀;
(g)硬質合金不重磨車刀
(2)各種車刀的基本用途
(a)90°車刀:用來車削工件的外圓,階台和端面。
(b)45°車刀:用來車削工件的外圓.端面和倒角。
(c)切斷刀 :用來切斷工件或工件上切出的溝槽。
(d)鏜孔刀:用來車削工件的內孔。
(e)成形車刀:用來車削階台處的圓角,圓槽或車削特殊形狀工件。
(f)紋車刀:用來車削螺紋 。

❺ 數控車削怎麼選擇刀具

數控車削車刀常用的一般分成型車刀、尖形車刀、圓弧形車刀以及三類。成型車刀也稱樣板車刀,其加工零件的輪廓形狀完全由車刀刀刃的形伏和尺寸決定。數控車削加工中,常見的成型車刀有小半徑圓弧車刀、非矩形車槽刀和螺紋刀等。在數控加工中,應盡量少用或不用成型車刀。尖形車刀是以直線形切削刃為特徵的車刀。這類車刀的刀尖由直線形的主副切削刃構成,如900內外圓車刀、左右端面車刀、切槽(切斷)車刀及刀尖倒棱很小的各種外圓和內孔車刀。尖形車刀幾何參數(主要是幾何角度)的選擇方法與普通車削時基本相同,但應結合數控加工的特點(如加工路線、加工干涉等)進行全面的考慮,並應兼顧刀尖本身的強度。
二是圓弧形車刀。圓弧形車刀是以一圓度或線輪廓度誤差很小的圓弧形切削刃為特徵的車刀。該車刀圓弧刃每一點都是圓弧形車刀的刀尖,應此,刀位點不在圓弧上,而在該圓弧的圓心上。圓弧形車刀可以用於車削內外表面,特別適合於車削各種光滑連接(凹形)的成型面。選擇車刀圓弧半徑時應考慮兩點車刀切削刃的圓弧半徑應小於或等於零件凹形輪廓上的最小曲率半徑,以免發生加工干淺該半徑不宜選擇太小,否則不但製造困難,還會因刀尖強度太弱或刀體散熱能力差而導致車刀損壞。

❻ 車削加工常用刀具有哪幾種

車工常用的車刀有90°外圓車刀、45°外圓車刀、切槽車刀、切斷車刀、鏜孔車刀、車螺紋車刀等.
常見的車刀角度
在正交平面(Po)內測量的角度:
(1) 前角(γ0):前刀面與基面的夾角.當前刀面與切削平面夾角小於90°時,前角為正
值;大於90°時,前角為負值.前角對於刀具的切削性能有很大的影響.
(2) 後角(α0):後刀面與切削平面的夾角.當後刀面與基面夾角小於90°時,後角為正
值;大於90°時,後角為負值.由於後角的存在,後刀面與加工過渡表面之間的摩擦
可以大大減小.
(3) 楔角(β0):前刀面與後刀面之間的夾角.
β0 = 90°- (γ0 +α0)
在基面(Pr)內測量的角度:
(1) 主偏角(κγ):主切削平面與假定進給運動方向之間的夾角.主偏角總是為正值.
(2) 副偏角(κγ`):副切削平面與假定進給運動反方向之間的夾角.
(3) 刀尖角(εγ):主切削平面與副切削平面之間的夾角.
εγ = 180°- (κγ + κγ`)
在切削平面(Ps)內測量的角度:
刃傾角(λs):指的是主切削刃與基面間的夾角.刃傾角的正負值是這樣設定的:當刀尖比車刀刀柄的安裝面高時,刃傾角為正值;當刀尖低時,刃傾角為負值.當切削刃平行於刀柄安裝面時,刃傾角為0°.這時,切削刃位於基面內.
以上是對主切削刃的分析.採用同樣的方法,也可以定義副切削刃的參考坐標系和參考坐標平面,即定義由副基面(Pr`)、副切削平面(Ps`)和副正交平面(Po`)構成的參考坐標系,進而對副切削刃的各種角度進行分析.

❼ 請問有要加盟做PCD刀具的嗎

聚晶金剛石刀具
1.聚晶金剛石(PCD)刀具概述
1.1 PCD刀具的發展
金剛石作為一種超硬刀具材料應用於切削加工已有數百年歷史。在刀具發展歷程中,從十九世紀末到二十世紀中期,刀具材料以高速鋼為主要代表;1927年德國首先研製出硬質合金刀具材料並獲得廣泛應用;二十世紀五十年代,瑞典和美國分別合成出人造金剛石,切削刀具從此步入以超硬材料為代表的時期。二十世紀七十年代,人們利用高壓合成技術合成了聚晶金剛石(PCD),解決了天然金剛石數量稀少、價格昂貴的問題,使金剛石刀具的應用范圍擴展到航空、航天、汽車、電子、石材等多個領域。
1.2 PCD刀具的性能特點
金剛石刀具具有硬度高、抗壓強度高、導熱性及耐磨性好等特性,可在高速切削中獲得很高的加工精度和加工效率。金剛石刀具的上述特性是由金剛石晶體狀態決定的。在金剛石晶體中,碳原子的四個價電子按四面體結構成鍵,每個碳原子與四個相鄰原子形成共價鍵,進而組成金剛石結構,該結構的結合力和方向性很強,從而使金剛石具有極高硬度。由於聚晶金剛石(PCD)的結構是取向不一的細晶粒金剛石燒結體,雖然加入了結合劑,其硬度及耐磨性仍低於單晶金剛石。但由於PCD燒結體表現為各向同性,因此不易沿單一解理面裂開。
PCD刀具材料的主要性能指標:①PCD的硬度可達8000HV,為硬質合金的80~120倍;②PCD的導熱系數為700W/mK,為硬質合金的1.5~9倍,甚至高於PCBN和銅,因此PCD刀具熱量傳遞迅速;③PCD的摩擦系數一般僅為0.1~0.3(硬質合金的摩擦系數為0.4~1),因此PCD刀具可顯著減小切削力;④PCD的熱膨脹系數僅為0.9×10
-6~1.18×10
-6,僅相當於硬質合金的1/5,因此PCD刀具熱變形小,加工精度高;⑤PCD刀具與有色金屬和非金屬材料間的親和力很小,在加工過程中切屑不易粘結在刀尖上形成積屑瘤。
1.3 PCD刀具的應用
工業發達國家對PCD刀具的研究開展較早,其應用已比較成熟。自1953年在瑞典首次合成人造金剛石以來,對PCD刀具切削性能的研究獲得了大量成果,PCD刀具的應用范圍及使用量迅速擴大。目前,國際上著名的人造金剛石復合片生產商主要有英國De
Beers公司、美國GE公司、日本住友電工株式會社等。據報道,1995年一季度僅日本的PCD刀具產量即達10.7萬把。PCD刀具的應用范圍已由初期的車削加工向鑽削、銑削加工擴展。由日本一家組織進行的關於超硬刀具的調查表明:人們選用PCD刀具的主要考慮因素是基於PCD刀具加工後的表面精度、尺寸精度及刀具壽命等優勢。金剛石復合片合成技術也得到了較大發展,De
Beers公司已推出了直徑74mm、層厚0.3mm的聚晶金剛石復合片。
國內PCD刀具市場隨著刀具技術水平的發展也不斷擴大。目前中國第一汽車集團已有一百多個PCD車刀使用點,許多人造板企業也採用PCD刀具進行木製品加工。PCD刀具的應用也進一步推動了對其設計與製造技術的研究。國內的清華大學、大連理工大學、華中理工大學、吉林工業大學、哈爾濱工業大學等均在積極開展這方面的研究。國內從事PCD刀具研發、生產的有上海舒伯哈特、鄭州新亞、南京藍幟、深圳潤祥、成都工具研究所等幾十家單位。目前,PCD刀具的加工范圍已從傳統的金屬切削加工擴展到石材加工、木材加工、金屬基復合材料、玻璃、工程陶瓷等材料的加工。通過對近年來PCD刀具應用的分析可見,PCD刀具主要應用於以下兩方面:①難加工有色金屬材料的加工:用普通刀具加工難加工有色金屬材料時,往往產生刀具易磨損、加工效率低等缺陷,而PCD刀具則可表現出良好的加工性能。如用PCD刀具可有效加工新型發動機活塞材料——過共晶硅鋁合金(對該材料加工機理的研究已取得突破)。②難加工非金屬材料的加工:PCD刀具非常適合對石材、硬質碳、碳纖維增強塑料(CFRP)、人造板材等難加工非金屬材料的加工。如華中理工大學1990年實現了用PCD刀具加工玻璃;目前強化復合地板及其它木基板材(如MDF)的應用日趨廣泛,用PCD刀具加工這些材料可有效避免刀具易磨損等缺陷。
2.PCD刀具的製造技術
2.1 PCD刀具的製造過程
PCD刀具的製造過程主要包括兩個階段:①PCD復合片的製造:PCD復合片是由天然或人工合成的金剛石粉末與結合劑(其中含鈷、鎳等金屬)按一定比例在高溫(1000~2000℃)、高壓(5~10萬個大氣壓)下燒結而成。在燒結過程中,由於結合劑的加入,使金剛石晶體間形成以TiC、SiC、Fe、Co、Ni等為主要成分的結合橋,金剛石晶體以共價鍵形式鑲嵌於結合橋的骨架中。通常將復合片製成固定直徑和厚度的圓盤,還需對燒結成的復合片進行研磨拋光及其它相應的物理、化學處理。②PCD刀片的加工:PCD刀片的加工主要包括復合片的切割、刀片的焊接、刀片刃磨等步驟。
2.2 PCD復合片的切割工藝
由於PCD復合片具有很高的硬度及耐磨性,因此必須採用特殊的加工工藝。目前,加工PCD復合片主要採用電火花線切割、激光加工、超聲波加工、高壓水射流等幾種工藝方法,其工藝特點的比較見表1。
表1 PCD復合片切割工藝的比較
工藝方法-工藝特點
電火花加工-高度集中的脈沖放電能量、強大的放電爆炸力使PCD材料中的金屬融化,部分金剛石石墨化和氧化,部分金剛石脫落,工藝性好、效率高
超聲波加工-加工效率低,金剛石微粉消耗大,粉塵污染大
激光加工-非接觸加工,效率高、加工變形小、工藝性差
在上述加工方法中,電火花加工效果較佳。PCD中結合橋的存在使電火花加工復合片成為可能。在有工作液的條件下,利用脈沖電壓使靠近電極金屬處的工作液形成放電通道,並在局部產生放電火花,瞬間高溫可使聚晶金剛石熔化、脫落,從而形成所要求的三角形、長方形或正方形的刀頭毛坯。電火花加工PCD復合片的效率及表面質量受到切削速度、PCD粒度、層厚和電極質量等因素的影響,其中切削速度的合理選擇十分關鍵,實驗表明,增大切削速度會降低加工表面質量,而切削速度過低則會產生「拱絲」現象,並降低切割效率。增加PCD刀片厚度也會降低切割速度。
2.3 PCD刀片的焊接工藝
PCD復合片與刀體的結合方式除採用機械夾固和粘接方法外,大多是通過釺焊方式將PCD復合片壓制在硬質合金基體上。焊接方法主要有激光焊接、真空擴散焊接、真空釺焊、高頻感應釺焊等。目前,投資少、成本低的高頻感應加熱釺焊在PCD刀片焊接中得到廣泛應用。在刀片焊接過程中,焊接溫度、焊劑和焊接合金的選擇將直接影響焊後刀具的性能。在焊接過程中,焊接溫度的控制十分重要,如焊接溫度過低,則焊接強度不夠;如焊接溫度過高,PCD容易石墨化,並可能導致「過燒」,影響PCD復合片與硬質合金基體的結合。在實際加工過程中,可根據保溫時間和PCD變紅的深淺程度來控制焊接溫度(一般應低於700℃)。國外的高頻焊接多採用自動焊接工藝,焊接效率高、質量好,可實現連續生產;國內則多採用手工焊接,生產效率較低,質量也不夠理想。
2.4 PCD刀片的刃磨工藝
PCD的高硬度使其材料去除率極低(甚至只有硬質合金去除率的萬分之一)。目前,PCD刀具刃磨工藝主要採用樹脂結合劑金剛石砂輪進行磨削。由於砂輪磨料與PCD之間的磨削是兩種硬度相近的材料間的相互作用,因此其磨削規律比較復雜。對於高粒度、低轉速砂輪,採用水溶性冷卻液可提高PCD的磨削效率和磨削精度。砂輪結合劑的選擇應視磨床類型和加工條件而定。由於電火花磨削(EDG)技術幾乎不受被磨削工件硬度的影響,因此採用EDG技術磨削PCD具有較大優勢。某些復雜形狀PCD刀具(如木工刀具)的磨削也對這種靈活的磨削工藝具有巨大需求。隨著電火花磨削技術的不斷發展,EDG技術將成為PCD磨削的一個主要發展方向。
3.PCD刀具的設計原則
3.1 刀具材料的選擇
(1)合理選擇PCD粒度
PCD粒度的選擇與刀具加工條件有關,如設計用於精加工或超精加工的刀具時,應選用強度高、韌性好、抗沖擊性能好、細晶粒的PCD。粗晶粒PCD刀具則可用於一般的粗加工。PCD材料的粒度對於刀具的磨損和破損性能影響顯著。研究表明:PCD粒度號越大,刀具的抗磨損性能越強。採用De
Beers 公司SYNDITE 002和SYNDITE
025兩種PCD材料的刀具加工SiC基復合材料時的刀具磨損試驗結果表明,粒度為2μm的SYNDITE
002PCD材料較易磨損。
(2)合理選擇PCD刀片厚度
通常情況下,PCD復合片的層厚約為0.3~1.0mm,加上硬質合金層後的總厚度約為2~8mm。較薄的PCD層厚有利於刀片的電火花加工。De
Beers公司推出的0.3mm厚PCD復合片可降低磨削力,提高電火花的切割速度。PCD復合片與刀體材料焊接時,硬質合金層的厚度不能太小,以避免因兩種材料結合面間的應力差而引起分層。
3.2 刀具幾何參數與結構設計
PCD刀具的幾何參數取決於工件狀況、刀具材料與結構等具體加工條件。由於PCD刀具常用於工件的精加工,切削厚度較小(有時甚至等於刀具的刃口半徑),屬於微量切削,因此其後角及後刀面對加工質量有明顯影響,較小的後角、較高的後刀面質量對於提高PCD刀具的加工質量可起到重要作用。
PCD復合片與刀桿的連接方式包括機械夾固、焊接、可轉位等多種方式,其特點與應用范圍見表2。
表2 PCD復合片與刀桿連接方式的特點與應用
連接方式-特點-應用范圍
機械夾固-由標准刀體及可做成各種集合角度的可換刀片組成,具有快換和便於重磨的優點-中小型機床
整體焊接-結構緊湊、製作方便,可製成小尺寸刀具-專用刀具或難於機夾的刀具,用於小型機床
機夾焊接-刀片焊接於刀頭上,可使用標准刀桿,便於刃磨及調整刀頭位置-自動機床、數控機床
可轉位-結構緊湊,夾緊可靠,不需重磨和焊接,可節省輔助時間,提高刀具壽命-普通通用機床
4.PCD刀具的切削參數與失效機理
4.1 PCD刀具切削參數對切削性能的影響
(1)切削速度
PCD刀具可在極高的主軸轉速下進行切削加工,但切削速度的變化對加工質量的影響不容忽視。雖然高速切削可提高加工效率,但在高速切削狀態下,切削溫度和切削力的增加可使刀尖發生破損,並使機床產生振動。加工不同工件材料時,PCD刀具的合理切削速度也有所不同,如銑削Al2O3強化地板的合理切削速度為110~120m/min;車削SiC顆粒增強鋁基復合材料及氧化硅基工程陶瓷的合理切削速度為30~40m/min。
(2)進給量
如PCD刀具的進給量過大,將使工件上殘余幾何面積增加,導致表面粗糙度增大;如進給量過小,則會使切削溫度上升,切削壽命降低。
(3)切削深度
增加PCD刀具的切削深度會使切削力增大、切削熱升高,從而加劇刀具磨損,影響刀具壽命。此外,切削深度的增加容易引起PCD刀具崩刃。
不同粒度等級的PCD刀具在不同的加工條件下加工不同工件材料時,表現出的切削性能也不盡相同,因此應根據具體加工條件確定PCD刀具的實際切削參數。
4.2 PCD刀具的失效機理
刀具的磨損形式主要有磨料磨損、粘結磨損(冷焊磨損)、擴散磨損、氧化磨損、熱電磨損等。PCD刀具的失效形式與傳統刀具有所不同,主要表現為聚晶層破損、粘結磨損和擴散磨損。研究表明,採用PCD刀具加工金屬基復合材料時,其失效形式主要為粘結磨損和由金剛石晶粒缺陷引起的微觀晶間裂紋。在加工高硬度、高脆性材料時,PCD刀具的粘結磨損並不明顯;相反,在加工低脆性材料(如碳纖維增強材料)時,刀具的磨損增大,此時粘接磨損起主導作用。
5.結語
PCD刀具因其良好的加工質量和加工經濟性在非金屬材料、有色金屬及其合金材料、金屬基復合材料等切削加工領域顯示出其它刀具難以比擬的優勢。隨著PCD刀具的理論研究日益深入及其應用技術的進一步推廣,PCD刀具在超硬刀具領域的地位將日益重要,其應用范圍也將進一步拓展。

❽ 車削刀具怎麼分類

車刀的種類很多,按其結構可分為整體式、焊接式和機夾可轉位式車刀等,如圖5-27所示。按加工表面的不同,可分為外圓車刀、端面車刀、割刀、鏜刀和成形車刀等多種形式,如圖5-28所示。車刀由刀柄和刀體兩部分組成。刀柄是刀具的夾持部分,刀體(也稱刀頭)是車刀的切削部分,承擔切削工作,也是刀具上夾固或焊接刀片的部分。刀體的切削部分要求具有高的硬度、強度、耐熱性和耐磨性,以保證刀刃鋒利能夠順利從工件表面切下多餘材料。所以常用硬質合金、高速鋼等材料。

圖5-28各種車刀形式1—切斷車刀;2、3、4、5、7—外圓車刀; 6—成形車刀;8—外螺紋車刀;9—端面車刀; 10、11—內孔車刀;12—切槽車刀;13—內螺紋車刀

❾ 數控車削刀片有沒有像白鋼刀那樣鋒利的刀片

白鋼刀就是高速鋼,而數控刀具的材質比起白鋼刀的材質,至少好2個等級。
但是,數控車削刀片一般都是鎢鋼材質,和更好的材質,在鋒利性方面反而不如高速鋼,也就是白鋼。

❿ 車削不銹鋼用什麼刀具

一 、車削不銹鋼用什麼刀具有以下兩種情況:

1、不銹鋼硬度低且它的粘刀性較低,一般用硬質合金刀具,車削速度略高,進刀量適當,有條件附加冷卻液。

2、不銹鋼硬度較高或粘刀性較高,使用金剛石刀具。車削速度高,進刀量少,附加冷卻液。

二、加工性比中碳鋼差得多,以普通45號鋼的切削加工性作為100%,奧氏體不銹鋼1Cr18Ni9Ti的相對切削加工性為40%;鐵素體不銹鋼1Cr28為48%;馬氏體不銹鋼2Cr13為55%。其中,以奧氏體和奧氏體+鐵素體不銹鋼的切削加工性最差。

(10)車削刀片招商加盟擴展閱讀:

一、刀具選擇:

1、通常當材料硬度高時,耐磨性也高;抗彎強度高時,沖擊韌性也高。但材料硬度越高,其抗彎強度和沖擊韌性就越低。高速鋼因具有很高的抗彎強度和沖擊韌性,以及良好的可加工性,現代仍是應用最廣的刀具材料,其次是硬質合金。

2、聚晶立方氮化硼適用於切削高硬度淬硬鋼和硬鑄鐵等;聚晶金剛石適用於切削不含鐵的金屬,及合金、塑料和玻璃鋼等;碳素工具鋼和合金工具鋼只用作銼刀、板牙和絲錐等工具。硬質合金可轉位刀片已用化學氣相沉積塗覆碳化鈦、氮化鈦、氧化鋁硬層或復合硬層。

3、正在發展的物理氣相沉積法不僅可用於硬質合金刀具,也可用於高速鋼刀具,如鑽頭、滾刀、絲錐和銑刀等

二、注意:

1、切削力大

不銹鋼在切削過程中塑性變形大,尤其是奧氏體不銹鋼(其伸長率超過45號鋼的1.5倍以上),使切削力增加。

同時,不銹鋼的加工硬化嚴重,熱強度高,進一步增大了切削抗力,切屑的捲曲折斷也比較困難。因此加工不銹鋼的切削力大,如車削1Cr18Ni9Ti的單位切削力為2450 MPa,比45號鋼高25%。

2、切削溫度高

切削時塑性變形及與刀具間的摩擦都很大,產生的切削熱多;加上不銹鋼的導熱系數約為45號鋼的1/2~1/4,大量切削熱都集中在切削區和刀-屑接觸的界面上,散熱條件差。在相同的條件下,1Cr18Ni9Ti的切削溫度比45號鋼高200℃左右。

3、切屑不易折斷

不銹鋼的塑性、韌性都很大,車加工時切屑連綿不斷,不僅影響操作的順利進行,切屑還會擠傷已加工表面。在高溫、高壓下,不銹鋼與其他金屬的親和性強,易產生粘附現象,並形成積屑瘤,既加劇刀具磨損,又會出現撕扯現象而使已加工表面惡化。

含碳量較低的馬氏體不銹鋼的這一特點更為明顯。

4、刀具易磨損

切削不銹鋼過程中的親和作用,使刀-屑間產生粘結、擴散,從而使刀具產生粘結磨損、擴散磨損,致使刀具前刀面產生月牙窪,切削刃還會形成微小的剝落和缺口;

加上不銹鋼中的碳化物(如TiC)微粒硬度很高,切削時直接與刀具接觸、摩擦,擦傷刀具,還有加工硬化現象,均會使刀具磨損加劇。