1. 國內大數據分析服務商哪一家比較好
國內BI:海致BDP、smartbi、用友華表、帆軟、潤乾報表,永洪科技等等。
1、海致BDP
1)這兩年很熱,行業都比較贊賞。BDP旨在幫助企業快速完成多數據整合,建立統一數據口徑,支持自助式數據准備(ETL),並提供靈活、易用、高效可視化探索式分析能力,幫助企業構建貼合自身業務的企業洞察。BDP可以靈活接入與同步多種數據源,包括各類資料庫連接、OpenAPI以及各種SaaS平台API,滿足企業多種多樣的業務場景、億行數據秒反應,快速實現數據清洗、整合、載入,通過拖拽即可可視化分析,支持近數據地圖、漏斗圖、旭日圖、餅圖、柱狀圖、折線圖、詞雲、雷達等30種圖表類型,讓數據更加直觀、美觀。
2)BDP商業數據平台為企業提供的核心價值在於用直觀、多維、實時的方式展示和分析數據,並可在APP實時查看和分享,全面激活企業內部數據,用數據驅動業績,適應快速變化的市場。目前他們服務的客戶也很多,涵蓋互聯網、零售快消、物流、醫療、電商、酒店、教育SEM等多個行業。
3)跟他們公司的人接觸過,服務態度很好,也很專業,價格不貴。
2、FineBI
1)FineBI是幾年前帆軟公司推出的,在國內口碑和發展還行。用戶只需在Dashboard中簡單拖拽操作,便能製作出豐富多樣的數據可視化信息,進行數據鑽取、聯動和過濾等操作,自由分析數據。FineBI面向企業IT部門、業務人員,提供企業級管控下的業務人員自助式數據分析,向下幫助IT做好數據管控,向上充分利用底層數據,支撐前端業務數據應用。
2)數據分析功能還算全面實用,但產品比較中規中矩,並沒有那麼多突出亮點。
3、永洪
1)永洪利用sql處理數據,不支持程序介面,實施交由第三方外包。永洪的技術主要分為大數據和可視化兩點。在大數據方面,通過列存儲、分布式計算、內存計算、分布式通訊等技術,永洪自主研發了高性能的大數據計算引擎,作為分析用的數據集市,可實現百億級數據在秒級時間內完成計算。
2)在可視化方面,永洪將復雜的多維分析功能隱藏在背後,在前端通過點擊和拖拽的簡單可視化操作實現各種復雜的分析過程。
3)需要一定的技術門檻,交互有點小復雜。
2. 大數據分析平台那家好,有給推薦個比較好的平台。
最權威的當屬NLPIR了。
NLPIR由專注於大數據科學研究與工程應用融合領域的十多名博士碩士,傾力15年,持續創新而構建,該平台分別獲得了2010年錢偉長中文信息處理科學技術獎一等獎,國際與國內公開第三方的獨立評測綜合第一名。綜合平衡了效果與效率,實現了 「又好又快」的技術追求。
普適優勢
NLPIR提供雲服務,更多的是提供第三方二次開發介面,你無需訪問我們的伺服器,確保自身信息內容的安全性,開發平台兼容當前所有主流的操作系統與開發語言。
經驗優勢
十餘年中,NLPIR先後服務了全球30萬家機構。其中涵蓋了中央網信辦、中國證監會、中國人民銀行、國家統計局、國家氣象局等國家機構,中信信託、華為、人民網、中國移動、中國郵政等大型商業機構,以及中國科學院、清華大學、中國科技信息情報研究所等科研機構。
3. 大數據分析需要哪些工具
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
4. 有靠譜的大數據分析平台推薦嗎,能做品牌投放監控的
慧科訊業吧,他們就是做這些的,在行業里也算是非常大的品牌。
5. 大數據分析軟體供應商哪家好
未至科技魔方是一款大數據模型平台,是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。
6. 大數據分析服務商哪家好
只要是正規的運營商效果應該都是可以的,不過想要真正做出效果,一定要在建模的時候多跟運營商溝通,模的好壞直接影響到你後期的使用效果,希望能幫助到你
7. 做大數據分析一般用什麼工具呢
Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎
Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
8. 大數據分析工具都有哪些
大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,那麼大數據分析的工具都有哪些呢?大數據分析的工具有很多很多,一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面我們就對大數據分析工具進行詳細介紹。
首先我們從數據存儲來講數據分析的工具,我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力;
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表;
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具。
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體,一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告;
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash;
以上的內容就是對於數據分析的工具的列舉, 想必大家看這篇文章能夠給大家帶來幫助大家在進行數據分析的時候一定要注意好上面提到的內容,這樣才能夠對數據分析的很好。最後感謝大家的閱讀。
9. 大數據分析工具 大數據分析工具 求大神推薦 收費的免費的都可以
我們單位用了ethink 很不錯